ON THE MONOTONICITY OF SOME FUNCTIONALS IN THE FAMILY OF UNIVALENT FUNCTIONS

BY E. NETANYAHU AND M. SCHIFFER[†]

ABSTRACT

Let S denote the class of regular and univalent functions in |z| < 1 with the normalization f(0) = 0, f'(0) = 1. Denote $d_f = \inf_{f \in S} \{|\alpha| | f(z) \neq \alpha, |z| < 1\}$ and let $S(d) = \{f | f \in S, d_f = d, \frac{1}{4} \le d \le 1\}$. The analytic function f(z) is univalent in |z| < 1 if and only if

$$\log \frac{f(z) - f(\zeta)}{z - \zeta} = \sum_{m, n=0}^{\infty} d_{mn} z^m \zeta^n$$

converges in the bicylinder |z| < 1, $|\zeta| < 1$. Let $c_{mn} = \sqrt{mn} d_{mn}$ and $c_{nn}(d) = \max_{f \in S(d)} \{\text{Re}(c_{nn})\}$. The paper deals with the monotonicity of $c_{nn}(d)$ and related functionals.

1. Introduction

In dealing with extremum problems for univalent functions, it is relatively easy to characterize the extremum functions by functional-differential equations. A much harder task is the identification of the solution and the complete answer to the problem. In particular, one has often to select from a number of possible solutions to the functional-differential equation the actual extremum function. In this paper we discuss a question which is of interest in itself and for which a complete answer can be obtained by means of the variational method.

Let S be the family of regular normalized univalent functions in |z| < 1:

$$(1) f(z) = z + a_2 z^2 + \cdots$$

For any $f \in S$ let

^{*} Supported in part by NSF grant MCS 75-23332-A03. Received May 20, 1978

(2)
$$d_f = \inf\{|\alpha| | f(z) \neq \alpha, |z| < 1\}$$

and denote by S(d), $\frac{1}{4} \le d \le 1$ the sub-family of S for which $d_f = d$ (see [2]). Let $\phi[f]$ be any functional defined for the class S and let M(d) be the maximum value of $\phi[f]$ with respect to the subclass S(d). Consider then a value d_0 for which $M(d_0)$ is stationary. Under any variation of the extremum function $f_0(z) \in S(d_0)$ which is admissible in S, the value $\phi[f_0]$ will be stationary; hence $f_0(z)$ will satisfy the functional-differential equation for the extremum of $\phi[f]$ within S. This shows the importance of the question whether this equation determines a solution in a unique way. Indeed, whenever this is so, M(d) will be monotonically decreasing with d. If there are several solutions to the functional-differential equation, however, one may determine the largest d-value to which all of them belong and guarantee, at least, the monotonic decrease of M(d) for all larger d.

We shall now introduce a particular functional $\phi[f]$ which has been already extensively studied within the family S.

The analytic function f(z) is univalent in |z| < 1 if and only if the double series

(3)
$$\log \frac{f(z) - f(\zeta)}{z - \zeta} = \sum_{m, n=0}^{\infty} d_{mn} z^m \zeta^n$$

converges in the bicylinder |z| < 1, $|\zeta| < 1$. It was shown by Grunsky [1] that a necessary and sufficient condition for the function f(z) to be univalent is that the sharp inequalities

(4)
$$\operatorname{Re}\left\{\sum_{m,n=1}^{\infty}c_{mn}\lambda_{m}\lambda_{n}\right\} \leq \sum_{n=1}^{\infty}|\lambda_{n}|^{2}$$

hold for all choices of λ_m , where

$$(5) c_{mn} = \sqrt{mn} d_{mn}.$$

With f(z) we consider the odd univalent function

$$(6) F(z) = \sqrt{f(z^2)}$$

belonging to S, and denote the Grunsky coefficients belonging to F(z) by D_{mn} and C_{mn} respectively.

Because of the identity

(7)
$$\log \frac{F(z) - F(\zeta)}{z - \zeta} + \log \frac{F(z) + F(\zeta)}{z + \zeta} = \log \frac{f(z^2) - f(\zeta^2)}{z^2 - \zeta^2}$$

it follows that

$$(8) C_{2m,2n} = c_{mn}.$$

We will consider the behavior of

(9)
$$c_{nn}(d) = \max_{f \in S(d)} \{\operatorname{Re}(c_{nn})\}$$
(b)
$$C_{nn}(d) = \max_{f \in S(d)} \{\operatorname{Re}(C_{nn})\}$$

and prove the following

THEOREM. $C_{nn}(d) = 1$ for all values of d in $\begin{bmatrix} \frac{1}{4}, (\frac{1}{4})^{1/n} \end{bmatrix}$ and strictly monotone decreasing for d in $[(\frac{1}{4})^{1/n}, 1)]$.

2. The case of a local maximum of $Re(c_{nn})$

Because of the compactness of S there is, at least, one function for which $\max_{f \in S} \{ \text{Re}(c_{nn}) \}$ is attained. So let w = f(z) be such a function and let w_0 be a value in the w-plane such that $f(z) \neq w_0$ for |z| < 1.

As shown in [3], there exist functions $f^*(z) \in S$ of the asymptotic form

(10)
$$f^*(z) = f(z) + \frac{a\rho^2 f(z)^2}{w_0^2 (f(z) - w_0)} + o(\rho^2)$$

for $\rho > 0$ arbitrary small, |a| = 1, such that $o(\rho^2)$ can be estimated uniformly in each closed subdomain of |z| < 1.

A simple calculation gives that

$$(11)\log \frac{f^*(z) - f^*(\zeta)}{z - \zeta} = \log \frac{f(z) - f(\zeta)}{z - \zeta} + \frac{a\rho^2}{w_0^2} \left(1 - \frac{1}{\left(1 - \frac{f(\zeta)}{w_0}\right)\left(1 - \frac{f(\zeta)}{w_0}\right)}\right) + o(\rho^2).$$

Hence

(12)
$$\sum_{m,n=0}^{\infty} \delta d_{mn} z^{m} \zeta^{n} = \frac{a\rho^{2}}{w_{0}^{2}} \left(1 - \frac{1}{\left(1 - \frac{f(z)}{w_{0}} \right) \left(1 - \frac{f(\zeta)}{w_{0}} \right)} \right) + o(\rho^{2})$$

$$= \frac{a\rho^{2}}{w_{0}^{2}} - \frac{a\rho^{2}}{w_{0}^{2}} \sum_{m=0}^{\infty} \gamma_{m} \left(\frac{1}{w_{0}} \right) \gamma_{n} \left(\frac{1}{w_{0}} \right) z^{m} \zeta^{n} + o(\rho^{2}),$$

where

(13)
$$\frac{1}{1 - \frac{f(z)}{w_0}} = \sum_{m=0}^{\infty} \gamma_m \left(\frac{1}{w_0}\right) z^m$$

and $\gamma_m(x)$ is a polynomial in x of degree m with $\gamma_m(0) = 0$, $m \ge 1$, starting with x^m (δ stands, as usual, for variation).

Thus

(14)
$$\delta d_{mn} = -\frac{a\rho^2}{w_0^2} \gamma_m \left(\frac{1}{w_0}\right) \gamma_n \left(\frac{1}{w_0}\right) + o(\rho^2), \qquad m, n \ge 1.$$

Because of the extremal property of f(z) it follows that

(15)
$$\operatorname{Re}\left\{-\frac{a\rho^{2}}{w^{2}}\gamma_{n}\left(\frac{1}{w}\right)^{2}+o(\rho^{2})\right\} \leq 0,$$

for any value w not in the image of |z| < 1, and admissible variations (10).

Applying the fundamental lemma of the calculus of variations for univalent functions [3] we get that an extremal function maps |z| < 1 onto the whole w-plane slit along analytic arcs w(t), each of which satisfies the differential equation

(16)
$$\left(\frac{dw}{dt}\right)^2 \frac{1}{w^2} \gamma_n \left(\frac{1}{w}\right)^2 \le 0$$

for any real curve parameter t.

If we parametrize the boundary arcs in the form

(17)
$$w(\phi) = f(e^{i\phi}), \quad \frac{dw}{d\phi} = ie^{i\phi}f'(e^{i\phi}); \qquad 0 \le \phi < 2\pi,$$

we get from (16) that

(18)
$$\frac{z^2 f'(z)^2}{f(z)^2} \gamma_n \left(\frac{1}{f(z)}\right)^2 \ge 0; \qquad |z| = 1.$$

Hence

(19)
$$\frac{zf'(z)}{f(z)} \gamma_n \left(\frac{1}{f(z)}\right) = \text{real}$$

on |z| = 1.

The left-hand side of (19) is regular in |z| < 1 except for a pole of order n at z = 0, and real on |z| = 1.

By the Schwarz reflection principle it can be continued for |z| > 1.

Thus f(z) satisfies in the whole z-plane the differential equation

(20)
$$\frac{zf'(z)}{f(z)} \gamma_n \left(\frac{1}{f(z)}\right) = \frac{1}{z^n} + \cdots + z^n,$$

where the expression on the right of (20) is a rational function real on |z| = 1.

We continue along lines similar to those in [4]. From the development

(21)
$$\log(1 - tf(z)) = -\sum_{n=1}^{\infty} g_n(t)z^n,$$

where g(t) is a polynomial in t of degree n, we get by differentiation with respect to t that

(22)
$$\frac{f(z)}{1 - tf(z)} = \sum_{n=1}^{\infty} g'_n(t) z^n.$$

Hence, from (13),

(23)
$$tg'_n(t) = \gamma_n(t), \qquad n \ge 1.$$

Comparing the coefficients of ζ^n on both ends of

(24)
$$\sum_{m,n=0}^{\infty} d_{mn} z^m \zeta^n = \log \frac{f(z)}{z} + \log \left(1 - \frac{f(\zeta)}{f(z)}\right) - \log \left(1 - \frac{\zeta}{z}\right)$$
$$= \log \frac{f(z)}{z} - \sum_{n=1}^{\infty} g_n \left(\frac{1}{f(z)}\right) \zeta^n + \sum_{n=1}^{\infty} \frac{\zeta^n}{nz^n}$$

we get that

(25)
$$\sum_{m=1}^{\infty} d_{mn} z^{m} = -g_{n} \left(\frac{1}{f(z)} \right) + \frac{1}{nz^{n}}.$$

From (25), by differentiation,

(26)
$$\frac{f'(z)}{f(z)^2} g'_n \left(\frac{1}{f(z)}\right) = \frac{1}{z^{n+1}} + \sum_{m=1}^{\infty} m d_{mn} z^{m-1},$$

and with (23)

(27)
$$\frac{zf'(z)}{f(z)} \gamma_n \left(\frac{1}{f(z)}\right) = \frac{1}{z^n} + \sum_{m=1}^{\infty} m d_{mn} z^m.$$

Because of (20), it now follows that

(28)
$$md_{mn} = \begin{cases} 0 & m \neq n, \\ 1 & m = n. \end{cases}$$

Hence

(29)
$$\max_{t \in S} \left\{ \operatorname{Re}(c_{nn}) \right\} = 1$$

and an extremal function satisfies

(30)
$$\frac{zf'(z)}{f(z)} \gamma_n \left(\frac{1}{f(z)}\right) = \frac{1}{z^n} + z^n.$$

Note that (29) and (30) have been proved on the assumption that $Re(c_{nn})$ for f(z) is not less than $Re(c_{nn})$ for the functions $f^*(z)$ "near" f(z), i.e. when $Re(c_{nn})$ has a local maximum.

This remark is important in the sequel.

Integrating (30) we get that

(31)
$$\int_{\infty}^{f} \frac{1}{f} \gamma_n \left(\frac{1}{f}\right) df = \int_{z_0}^{z} \left(\frac{1}{z^{n+1}} + z^{n-1}\right) dz,$$

where $|z_0| = 1$ and $f(z_0) = \infty$, and end up with

(32)
$$P\left(\frac{1}{f(z)}\right) \equiv \frac{1}{f(z)^n} + \dots + \frac{A_{n-1}}{f(z)} = \frac{1}{z^n} - z^n - C$$

where C is a pure imaginary constant. Because 1/z'' - z'' is also pure imaginary on |z| = 1 there is at least one value z_1 , $|z_1| = 1$, for which

$$\left|\frac{1}{z_1^n}-z_1^n-C\right|\geq 2.$$

Consider now the algebraic equation

(32')
$$P\left(\frac{1}{w}\right) = \frac{1}{z_1^n} - z_1^n - C,$$

which has n roots w_k , $k = 0, 1, \dots, n - 1$. These have preimages z_k of the form

either
$$z_1 \exp\left(\frac{2\pi i}{n}k\right)$$
 or $1/z_1 \exp\left(\frac{2\pi i}{n}\left(k+\frac{1}{2}\right)\right)$.

At any rate, all roots, w_k , lie on the boundary of the image domain. Hence, in view of (32') and (33) we have

$$\frac{1}{\left(\min_{1\leq k\leq n}|w_k|\right)^n} \geq \frac{1}{\prod_{k=1}^n|w_k|} \geq 2,$$

or

$$\min_{1 \le k \le n} |w_k| \le \left(\frac{1}{4}\right)^{1/2n}.$$

Thus, we have proved that an extremal function must belong to S(d), where

(36)
$$\frac{1}{4} \le d \le \left(\frac{1}{4}\right)^{1/2n}.$$

We are to show now that for every d satisfying (36) there is an extremal function belonging to S(d) for which $c_{nn} = 1$.

We claim that the functions

(37)
$$f(z,t) = \frac{e^t}{1/i^n} k [(-k^{-1}(e^{-2nt}k(z^{2n})))^{1/2n}], \qquad 0 \le t \le \infty,$$

where k is the Koebe function $k(z) = z/(1-z)^2$, have the desired property. From (37)

(38)
$$f(z,0) = \frac{z}{(1-i^{1/n}z)^2}, \qquad f(z,\infty) = \frac{z}{(1-z^{2n})^{1/n}}.$$

By direct calculation, we get that for these two functions $c_{nn} = 1$. So $(1/i^{1/n})k(i^{1/n}z)$ satisfies (32) with a corresponding P(1/f).

Let us write this equation in the form

(39)
$$P\left(\frac{i^{1/n}}{e^{ik}(i^{1/n}\zeta)}, t\right) = e^{-nt}\left(\frac{1}{\zeta^n} - \zeta^n - C\right), \qquad |\zeta| < 1,$$

where the coefficients of the polynomial P on the left-side of (39) are now dependent on t.

Writing in (37)

(40)
$$\zeta = (k^{-1}(e^{-2ni}k(z^{2n})))^{1/2n}, \qquad \eta = e^{-2ni}k(z^{2n})$$

we get from (39) that

$$(41) P\left(\frac{1}{f(z,t)},t\right) = e^{-nt}\left(\frac{1}{\sqrt{k^{-1}(\eta)}} - \sqrt{k^{-1}(\eta)} - C\right) = e^{-nt}\left(\frac{1}{\sqrt{\eta}} - C\right)$$
$$= \frac{1}{z^n} - z^n - C_1,$$

where $C_1 = Ce^{-nt}$.

Hence, f(z, t) will satisfy (30) with the corresponding γ_n . But then it follows from (27) that c_{nn} for this function is equal to 1.

We calculate now the nearest point to the origin in the image of |z| < 1 by f(z, t).

 η maps |z| < 1 onto the whole plane slit along $-\infty \le \lambda \le -\frac{1}{4}e^{-2nt}$. ζ maps this

plane onto $|\zeta| < 1$ slit along 2n radial slits, one of them being $-1 \le \eta \le -\tau$, $0 < \tau < 1$.

An easy calculation shows that the nearest point in the image of |z| < 1 by $(1/i^{1/n})k(i^{1/n}\zeta)$ is the image of $\tau e^{(2n-1)\pi i/2n}$. The distance of this image from the origin is $\tau/(1+2\tau\cos(\pi/2n)+\tau^2)$.

Thus $f(z,t) \in S(d(t))$ where

(42)
$$d(t) = \frac{e^{t}\tau}{1 + 2\tau\cos\frac{\pi}{2n} + \tau^{2}}.$$

As τ is a continuous function of t, so is d(t). From (38) we have that $d(0) = \frac{1}{4}$ and $d(\infty) = (\frac{1}{4})^{1/2n}$. Hence d(t) takes every value in $[\frac{1}{4}, (\frac{1}{4})^{1/2n}]$.

Because of (8) the result proved in this paragraph holds for $C_{2n,2n}(d)$.

3. The case of a local maximum of $Re(C_{nn})$

Let F(z) be an odd univalent function for which $Re(C_{nn})$ attains a maximum, and let f(z) be connected with F(z) by (6).

Because of (8) we need to consider only the case where n is odd.

Performing the variation of f(z) given by (10) we get that

(43)
$$F^*(z) = \sqrt{f^*(z^2)} = \sqrt{f(z^2)} \left(1 + \frac{a\rho^2 f(z^2)}{2w_0^2 (f(z^2) - w_0)} \right) + o(\rho^2)$$
$$= F(z) + \frac{a\rho^2}{2w_0^2} \frac{F(z)^3}{F(z)^2 - w_0} + o(\rho^2),$$

where w_0 is any fixed value not in the image of |z| < 1 by f(z).

An elementary calculation gives

(44)
$$\log \frac{F^*(z) - F^*(\zeta)}{z - \zeta} = \log \frac{F(z) - F(\zeta)}{z - \zeta}$$

$$+ \log \left[1 + \frac{a\rho^2}{2w_0^2} \left(1 - \frac{w_0^2 + w_0 F(z) F(\zeta)}{(F(z)^2 - w_0)(F(\zeta)^2 - w_0)} \right) \right] + o(\rho^2)$$

and hence

(45)
$$\delta \log \frac{F(z) - F(\zeta)}{z - \zeta} = \frac{a\rho^2}{2w_0^2} \left(1 - \frac{w_0^2 + w_0 F(z) F(\zeta)}{(F(z)^2 - w_0)(F(\zeta)^2 - w_0)} \right) + o(\rho^2).$$

Since $F(z)^2$ is an even function

(46)
$$\sum_{m,n=1}^{\infty} \delta D_{2m+1,2n+1} z^{2m+1} \zeta^{2n+1} = -\frac{a\rho^2 F(z) F(\zeta)}{2w_0 (F(z)^2 - w_0) (F(\zeta)^2 - w_0)} + o(\rho^2).$$

From the development

(47)
$$\frac{F(z)}{1 - xF(z)^2} = \sum_{m=0}^{\infty} \Gamma_m(x) z^{2m+1}$$

where $\Gamma_m(x)$ is a polynomial in x of degree m, we find that

(48)
$$\sum_{m,n=0}^{\infty} \delta D_{2m+1,2n+1} z^{2m+1} \zeta^{2n+1} = -\frac{a\rho^2}{2w_0^3} \sum_{m,n=0}^{\infty} \Gamma_m \left(\frac{1}{w_0}\right) \Gamma_n \left(\frac{1}{w_0}\right) z^{2m+1} \zeta^{2n+1} + o(\rho^2).$$

Hence

(49)
$$\delta D_{2n+1,2n+1} = -\frac{a\rho^2}{2w_0^3} \Gamma_n \left(\frac{1}{w_0}\right)^2 + o(\rho^2).$$

Because $\{Re D_{2n+1,2n+1}\}$ is maximal it follows that

(50)
$$\operatorname{Re}\left\{-\frac{a\rho^{2}}{w^{3}}\Gamma_{n}\left(\frac{1}{w}\right)^{2}+o(\rho^{2})\right\} \leq 0,$$

for any value w not in the image, and admissible variations (10).

Applying again the fundamental lemma of the calculus of variations for univalent functions we find that the extremal function w = f(z) maps |z| < 1 onto the whole w-plane slit along analytic arcs each of which satisfies the differential equation

(51)
$$\left(\frac{dw}{dt}\right)^2 \frac{1}{w^3} \Gamma_n \left(\frac{1}{w}\right)^2 + 1 = 0,$$

for a proper choice of the real curve parameter t.

Choosing

(52)
$$w(\phi) = f(e^{i\phi}), \qquad 0 \le \phi < 2\pi,$$

we get from (51) that

(53)
$$\frac{z^2 f'(z)^2}{f(z)^3} \Gamma_n \left(\frac{1}{f(z)}\right)^2 \ge 0 \quad \text{on } |z| = 1.$$

The expression on the left of (53) is regular in |z| < 1 except for a pole of order 2n + 1 at the origin and real on |z| = 1.

Hence, by the Schwarz reflection principle

(54)
$$\frac{z^2 f'(z)^2}{f(z)^3} \Gamma_n \left(\frac{1}{f(z)}\right)^2 = \frac{1}{z^{2n+1}} + \frac{A_{2n}}{z^{2n}} + \dots + A_0 + \dots + \bar{A}_{2n} z^{2n} + z^{2n+1},$$

with A_0 real, holds for all z.

On the other hand we have that

(55)
$$\log \frac{z+\zeta}{z-\zeta} + \log \frac{F(z)-F(\zeta)}{F(z)+F(\zeta)} = 2 \sum_{m,n=0}^{\infty} D_{2m+1,2n+1} z^{2m+1} \zeta^{2n+1}.$$

From (55) and the development

(56)
$$\log \frac{1 - tF(\zeta)}{1 + tF(\zeta)} = -2 \sum_{n=0}^{\infty} G_{2n+1}(t) \zeta^{2n+1},$$

where $G_{2n+1}(t)$ is a polynomial in t of degree 2n+1, we get that

(57)
$$G_{2n+1}\left(\frac{1}{F(z)}\right) = \frac{1}{(2n+1)z^{2n+1}} - \sum_{m=0}^{\infty} D_{2m+1,2n+1}z^{2m+1}.$$

Defferentiation of (56) with respect to t gives

(58)
$$\frac{F(\zeta)}{1 - t^2 F(\zeta)^2} = \sum_{n=0}^{\infty} G'_{2n+1}(t) \zeta^{2n+1}.$$

Combining (58) with (47) yields

(59)
$$\Gamma_n(t^2) = G'_{2n+1}(t).$$

From (57) it follows that

(60)
$$G'_{2n+1}\left(\frac{1}{F(z)}\right)\frac{F'(z)}{F(z)^2} = \frac{1}{z^{2n+2}} + \sum_{m=0}^{\infty} (2m+1)D_{2m+1,2n+1}z^{2m}.$$

As

(61)
$$F'(z) = \frac{zf'(z^2)}{\sqrt{f(z^2)}},$$

it follows from (59) and (60) that

(62)
$$\frac{zf'(z^2)}{f(z^2)^{3/2}} \Gamma_n \left(\frac{1}{f(z^2)} \right) = \frac{1}{z^{2n+2}} + \sum_{m=0}^{\infty} (2m+1) D_{2m+1,2n+1} z^{2m}.$$

Substituting z for z^2 and multiplying by \sqrt{z} , we end up with

(63)
$$\frac{zf'(z)}{f(z)^{3/2}} \Gamma_n \left(\frac{1}{f(z)} \right) = \frac{1}{z^{n+1/2}} + \sum_{m=0}^{\infty} (2m+1) D_{2m+1,2n+1} z^{m+1/2}.$$

Because of (53) the right-hand side of (63) must be real on |z| = 1. Hence

(64)
$$(2m+1)D_{2m+1,2n+1} = \begin{cases} 0 & m \neq n, \\ 1 & m = n. \end{cases}$$

So we have proved that $\max\{\text{Re}(C_{2n+1,2n+1})\}=1$ and an extremal function satisfies the differential equation

(65)
$$\frac{zf'(z)}{f(z)^{3/2}} \Gamma_n \left(\frac{1}{f(z)} \right) = \frac{1}{z^{n+\frac{1}{2}}} + z^{n+\frac{1}{2}}.$$

Integration of (65) gives

(66)
$$P\left(\frac{1}{f(z)}\right) \equiv \frac{1}{f(z)^{\frac{1}{2}}} \left(\frac{1}{f(z)^{n}} + \frac{A_{1}}{f(z)^{n-1}} + \dots + A_{n}\right) = \frac{1}{z^{n+\frac{1}{2}}} - z^{n+\frac{1}{2}};$$

note that the constant of integration is zero.

Squaring both sides of (66) gives that

(67)
$$\frac{1}{f(z)^{2n+1}} + \cdots + \frac{A_n^2}{f(z)} = \frac{(1-z^{2n+1})^2}{z^{2n+1}}.$$

For any value of z on |z|=1, the algebraic equation (67) has (2n+1) solutions. Denote by w_1, \dots, w_{2n+1} the values of f(z) in (67) for $z^{2n+1}=-1$. We have

and hence

(69)
$$\min_{1 \le i \le 2n+1} \{ |w_i| \} \le \left(\frac{1}{4}\right)^{1/(2n+1)}.$$

This last inequality implies that the extremal function f(z) belongs to S(d) where

(70)
$$\frac{1}{4} \le d \le \left(\frac{1}{4}\right)^{1/(2n+1)}.$$

Our aim is to show that for every d satisfying (70) there is an extremal function for which $C_{2n+1,2n+1} = 1$.

We first note that any function f(z) satisfying (66) will satisfy (65) with the corresponding Γ_n . Together with (63) for this Γ_n will give (64). Hence f(z) will be an extremal function for which $C_{2n+1,2n+1} = 1$.

A direct calculation shows that $C_{2n+1,2n+1} = 1$ for the Koebe function. Therefore

(71)
$$P\left(\frac{1}{k(z)}\right) = \frac{1}{z^{n+\frac{1}{2}}} - z^{n+\frac{1}{2}}.$$

Taking in (71) e'k(z) instead of k(z), $0 \le t < \infty$ we get

(72)
$$P\left(\frac{1}{e^{t}k(z)}, t\right) = e^{-(n+\frac{1}{2})t} \left(\frac{1}{z^{n+\frac{1}{2}}} - z^{n+\frac{1}{2}}\right)$$

where the coefficients of P in (72) depend now on t.

We claim that the functions

(73)
$$f(z,t) = e^{t} k \left[\left(k^{-1} (e^{-(2n+1)t} k (z^{2n+1})) \right)^{1/(2n+1)} \right], \quad |z| < 1,$$

t fixed, $0 \le t < \infty$, belong to S and satisfy (66), and so are extremal functions for which $C_{2n+1,2n+1} = 1$.

Indeed, putting

(74)
$$\zeta = (k^{-1}(\eta))^{1/(2n+1)}, \qquad \eta = e^{-(2n+1)t}k(z^{2n+1})$$

we get from (72) that

(75)
$$P\left(\frac{1}{f(z,t)},t\right) = e^{-(n+\frac{1}{2})t} \left(\frac{1}{\sqrt{k^{-1}(\eta)}} - \sqrt{k^{-1}(\eta)}\right)$$
$$= e^{-(n+\frac{1}{2})t} \frac{1}{\sqrt{\eta}} = \frac{1}{z^{n+\frac{1}{2}}} - z^{n+\frac{1}{2}}.$$

By (74) the disk |z| < 1 is mapped onto $|\zeta| < 1$ with (2n + 1) radial slits of equal length, one of them from -1 to $-\tau$, $0 < \tau < 1$, where

(76)
$$k(-\tau^{1/(2n+1)}) = -\frac{e^{(2n+1)t}}{4}.$$

From

$$|k(\zeta)| \ge \frac{|\zeta|}{(1+|\zeta|)^2},$$

it follows that the nearest boundary point to the origin in the image of |z| < 1 by $k(\zeta)$ is $k(-\tau)$.

Hence $f(z) \in S(d(t))$, where

(78)
$$d(t) = -e^{t}k \left[\left(k^{-1} \left(-\frac{1}{4}e^{-(2n+1)t} \right) \right)^{1/(2n+1)} \right].$$

d(t) is a continuous function of t for $0 \le t \le \infty$. As $d(0) = \frac{1}{4}$ and $d(\infty) = (\frac{1}{4})^{1/(2n+1)}$, d(t) takes every value in $[\frac{1}{4}, (\frac{1}{4})^{1/(2n+1)}]$.

The results obtained in the last two paragraphs together with the remark about the monotonicity in \$1 complete the proof of the theorem.

REFERENCES

- 1. H. Grunsky, Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen, Math. Z. 45 (1939), 29-61.
- 2. E. Netanyahu, On univalent functions in the unit disk whose image contains a given disk, J. Analyse Math. 23 (1970), 305-322.
- 3. M. Schiffer, A method of variation within the family of simple functions, Proc. London Math. Soc. 44 (1938), 432-449.
- 4. M. Schiffer, Faber polynomials in the theory of univalent functions, Bull. Amer. Math. Soc. 54 (1948), 503-517.

Technion — Israel Institute of Technology Haifa, Israel

AND

STANFORD UNIVERSITY
STANFORD, CALIFORNIA, USA